
## Nighttime Microphysics RGB

## Quick Guide

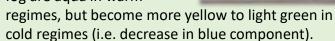


# Why is the NtMicro RGB imagery Important?

The distinction between low clouds and fog in satellite imagery is often a challenge. While the difference in the 10.4 and 3.9  $\mu m$  channels has been a regularly applied product to meet aviation forecast needs, the Nighttime Microphysics (NtMicro) RGB adds another channel difference (12- 10.4  $\mu m$ ) as a proxy to cloud thickness (see "Recipe" table) and repeats the use of the 10.4  $\mu m$  thermal channel to enhance areas of warm (i.e. low) clouds where fog is more likely. The NtMicro is also an efficient tool to quickly identify other cloud types in the mid and upper atmosphere.



### **NtMicro RGB Recipe**


| Color | Band / Band Diff.<br>(μm) | Physically Relates to   | Small contribution to pixel indicates  | Large Contribution to pixel indicates |
|-------|---------------------------|-------------------------|----------------------------------------|---------------------------------------|
| Red   | 12.4 – 10.4               | Optical Depth           | Thin clouds                            | Thick clouds                          |
| Green | 10.4 – 3.9                | Particle Phase and Size | Ice particles;<br>surface (cloud free) | Water clouds with small particles     |
| Blue  | 10.4                      | Temperature of surface  | Cold Surface                           | Warm surface                          |

### **Impact on Operations**

### **Primary Application**

Low clouds & fog

**analysis:** Low clouds and fog are aqua in warm



**Differentiate fog from low clouds:** Fog tends to appear "washed out" compared to low clouds. So, look for fog to have a less bright or near gray coloring.

**Efficient Cloud Analysis:** The multi-channel approach of the RGB allows for easy and quick discrimination of cloud types across the imagery.

**Secondary Applications:** Cloud analysis: height and phase, fire hot spots, moisture boundaries

### Limitations

### Nighttime only

**application:** The shortwave IR band is impacted by solar reflectance during the day



which impacts the 10.4 - 3.9 difference relationship. **Thin fog blends with surface:** Thin radiation fog

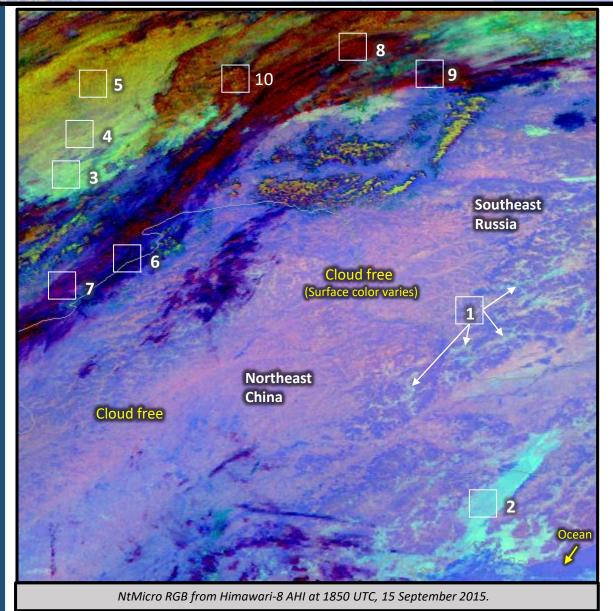
Thin fog blends with surface: Thin radiation fog is semi-transparent allowing surface emissions to impact pixel color. Fog often has less blue than low clouds.

Variable land/surface coloring: The color of cloud free regions will vary depending on their temperature, surface type, and the column moisture.

**Shortwave IR noise in extreme cold:** Speckled yellow pixels appear in very cold clouds (~<-30°C)

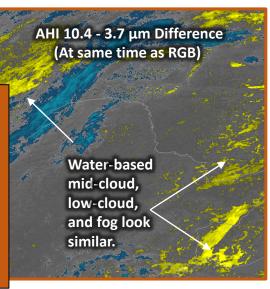
Last modified: 14 September 2017

## Nighttime Microphysics RGB


## Quick Guide






- fog (dull aqua to gray)
- Very low, warm cloud (aqua)
- 3 Low, cool, cloud (bright green)
- Mid water cloud
  (light green)
- Mid, thick, water/
  ice cloud (tan)
- 6 High, thin, ice cloud (dark blue)
- 7 High, very thin, ice cloud (purple)
- 8 High, thick cloud (dark red)
- High, opaque cirrus cloud (near black)
- High, thick, very cold cloud (red/yellow, noisy)

Note:, colors may vary diurnally, seasonally, and latitudinally



#### **Comparison to Other Products**

The "11-3.9" µm spectral difference (right) has traditionally been applied to analyze low clouds and fog. The color enhancement shows fog, low clouds, and even some mid-level water clouds colored in yellow while the NtMicro RGB (above) separates these features via additional bands / differences.



### **Resources**

#### **UCAR/COMET**

Multispectral Satellite
Applications: RGB Products
Explained.

#### NASA/SPORT

Aviation Forecasting RGB <u>Products</u>

#### **EUMETrain**

**RGB** Interpretation Guide